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Solvias 
A Technology Company

1970-1996 Central Research Center of Ciba-Geigy AG 

1997 Scientific Services of Novartis AG

1 Oct.1999: Start as fully autonomous and 
independent technology company

 Our Expertise
- Chemical, physical and biological analytics
- Synthesis with emphasis on (enantioselective) catalysis
- Service related products (chiral ligands)
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Chirality and Nature
(Handedness)

Living organisms are  
chiral!! 
Normally, only one 
enantiomer is 
produced in Nature

biological material recognizes enantiomers
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(R)-limonene (S)-limonene
orangeorange lemon

It smells�.

Carmen Claver



* Synthesis starting from naturally occurring chiral molecules 
 
    (e.g. from fermentation)  
 
  Chiral chromatography 
* Enantiomer separation Diastereomer separation 
  Kinetic resolution 
 

Syntheses of Enantiomerically 
Pure Compounds (EPC)

*  Stoichiometric 
*  Asymmetric Synthesis /  *  Biocatalyst  
   Catalysis *  Chemical catalyst 



Enantioselective Catalysis
Some Definitions: A Reminder
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kinetic resolution

only possible in presence of a chiral auxiliary
Selectivity: Enantiomeric excess (ee, %(R) - %(S))



Chirality in Pharma Development
AstraZeneca, GlaxoSmithKline, Pfizer (2006)

Chirality

Of the 128 molecules 
analyzed, 69 (54%) 
contained at least one 
stereogenic center. 

Of the 69 chiral 
molecules 67 were 
developed as single 
stereoisomers, with only 
two as racemates.

J.S. Carey, D. Laffan, C. Thomson, M.T. Williams, Org. Biomol. Chem. 4 (2006) 2337



Importance of Chiral Compounds

Market value for chiral fine chemicals (2000)

Total 6.6x109 $
Pharmaceutical application 5.4x109 $
Other applications 
(agrochemicals, flavors etc) 1.2x109 $

Major user: Life Science Industry

 Strong growth expected

S.C. Stinson, Chemical & Engineering News, May 14, 2001, p. 45



Life Science Industry
Product Development Process

PatentPatent

Lead 
Discovery

Lead 
Optimization NCE�s

Activity Screening
Models

Batch 0

Clinical / Field  Tests

Process / Formulation
Dev.

Profiling
Models

Toxicity
Models

Launch

1 -3 years 3 -4 years

Process
chemistry

>50�000 10 - 20 1 - 3 1

number of compounds

 production of multi kg for tox and clinical tests
 development of production process 

2 -3 years



Outline

 Background

 Developing Enantioselective Processes

 HTS at Solvias (Hydrogenation)

 Conclusions



Phases in Process Development

1. Choice of synthetic route: With or without catalysis?

2. Find effective catalytic system (ee; ton; tof)

3. Process optimization (catalytic step, overall synthesis)

4. Scale up, technical process

5. Manufacture (trouble shooting)



The (S)-Metolachlor Problem
(Ciba-Geigy/Syngenta/Solvias)
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The (S)-Metolachlor Problem
(Ciba-Geigy/Syngenta/Solvias)
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Josiphos ligand

Ir - Josiphos, acid + iodide
50°C, 80 bar

s/c 2,000,000
reaction time ~3 h

yield >99%, ee ~80%

Production process for enriched (S)-metolachlor

CH2ClCOCl

90%

10%



The History of rac-Metolachlor 
and (S)-Metolachlor

1970 Discovery of biological activity

1978 Full-scale plant >20�000 t/y 

1982 Bioactivity of (S) enantiomers detected

1983 Route design: 4 variants  imine hydrogenation

1985 Rh - cycphos (UBC Vancouver)

1987 Ir - diphosphine (F. Spindler; J.A. Osborn)

1993 Ir - ferrocenyl diphosphine catalysts

1993/4 Patents of rac. metolachlor expired

1995/6 Pilot results: e.e. 79%, ton 1�000�000, tof >200�000/h

16. Nov. 1996  First production batch



Some Lessons

1. Choice of synthetic route: With or without catalysis?

 Very situation dependent, not easy to accelerate



Important Factors when Deciding 
the Application of Catalysis

Product - availability of competitive alternative routes
- time frame for development
- cost vs added value

Catalytic reaction - maturity - known scope / limitations
- catalyst availability
- development time

- IP situation
- required equipment / techniques
- cost

Chemist & - education, acceptance of novel methods
Company - catalytic know how and facilities



2. Find effective catalytic system (ee; ton; tof)

Some Lessons

� Very often THE bottle neck

� Highest potential for acceleration

Major hurdles

 Availability of ligands (catalysts)

 Testing equipment

 Analytics



3. Process optimization (catalytic step, overall synthesis)

4. Scale up, technical process

5. Manufacture (trouble shooting)

Some Lessons

 Less potential for acceleration

Major hurdles
 Availability of ligands on technical scale / IP problems
 Scale up equipment
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Find Catalytic System (ee, ton, tof) 

� Choice of catalyst difficult due to high substrate 
specificity (analogies are often weak)

� Requirements for catalyst performance for 
economical processes can be very demanding

� Time constraints especially for new chemical 
entities in the pharma sector (less in agro)



Experience From Model Substrates
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Selected Customer Problems
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Toolbox for Process Development

� Library of chiral ligands /  metal precursors

� Suitable analytical procedures

BUT MOST IMPORTANT: Optimal screening strategy

� Experimental setup for parallel testing



Selection of Chiral Ligands
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HT Screening Strategies

Classical Strategy: Pre-existing library of ligands 

DSM Strategy: Preparation and screening of 

�instant� monophos-type ligand libraries 

Solvias
 >600 chiral ligands (both enantiomers)
 65% Solvias owned (mostly modular) ligand families
 20% patented ligands of other suppliers
 15% patent free ligands



Solvias Screening a Few Years Ago

300 ml autoclave

series of 50 ml autoclaves



The Solvias Octoclave

- Pressures up to 100 bar

- 8 parallel runs with gaseous reactants
- Very good mixing

- Loading under inert conditions



Solvias HTS Today
Symyx Based Platform

SFC

� Capacity: 200 react. / day
� Fully inert handling
� Robotics for set-up
� 96-well plates, 0.4ml
� Up to 100bar (H2, CO)
� Robotics for analytics
� (SFC, HPLC, GC)



Design of Experiments (DoE) done by catalysis expert 

� Combination of experience and serendipity 

If ever possible: In situ catalyst generation

� Highest possible flexibility (metal, precursor type, ligand,    
counterion) 

HTS Analytics: Need for speed (rt << 15 min / sample required)

� SFC, GC, fast HPLC

Ligands, additives, metals: Test large experimental space

� Scouting experiments in 50 ml autoclave:  p, T

� HTS with s/c 25 (purity of substrate)

Solvias HT Screening Strategy



Screening Work-Flow 

DESIGN
Different ligand classes (Key-, High Priority- and Low Priority Ligands)
Different metal precursors and ratios, different additives, different solvents

Definition of Ligand Definition of Reaction



Screening Work-Flow 

97.41



Case: Hydrogenation of Acrylic Acid

Targets: ● >95% ee
● 3 kg product delivery within 3 months
● Commercially available ligand 

State of the Art: Up to 90% ee
Several Cat.-systems described 
Mainly Rh-systems known (expensive metal!)

Rh-based catalyst systems at low to medium
pressure expected to work best

H2
R

R'

COOH

R'
R COOH

[cat*.]

R = alkyl, R' = functionalized alkyl



Design and Results of 1st HTS plate
Rational Design Based on Experience 

HT Screening:  �In situ mixing�, s/c: 25; 1 bar,  25°C, 1h

*Ligand

metal 
conv.[%]
ee[%]

Hit 1 

[Rh(nbd)2]BF4
100
92

P
PFe

Kephos SL-P053-2

Hit 2 

[Rh(nbd)2]BF4
100
90

P

N

P

O

O

Fe

SL-F056-1

Felix Spindler (unpublished results)

[Rh(nbd)2]BF4 in situ
and  
3 [Rh(PP)cod]BF4

13 Ligands (Josi-, Ke-
Tania-, Wal-, Mandy-, 

Fengphos, DIPAMP)
MeOH

NEt3

DMAP

 ee <95%
 experimental ligands



Design and Results of 2nd HTS plate
"Serendipity added" Design

Hit 1: in MeOH 

[RuI2(p-cymene)]2
100

>98 (R)

P
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Me2N

OMe
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P
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MeO
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Fe

Mandyphos SL-M004-1

*Ligand

metal 
conv.[%]
ee[%]

Hit 2: in EtOH/DCE = 2/1 

87 (S)

[Ir(cod)Cl]2
100

P
H

Me2N

OMe

OMe

Ph

P
H

MeO

MeO

PhMe2N

Fe

Mandyphos SL-M004-1

Ulrike Nettekoven (unpublished results)

[Rh(nbd)2]BF4, 
[(Rh(cod)Cl]2, [Ir(cod)Cl]2

[Ru(p-cymene)l2]2

27 Ligands (10 Fengphos, 
6 Kephos, Tania-, Wal-, Mandy-,

Josiphos, BINAP, bppm)

MeOH,
DCE,

Toluene

HT Screening:  �In situ mixing�, s/c: 25; 10 bar,  40 °C, 15 h

 ee >95%
 Commercial ligand



Case: Hydrogenation of Acrylic Acid

Targets: ● >95% ee
● 3 kg product delivery within 3 months
● Commercially available ligand

Delivered: 98% ee
s/c 1000, tof 250 h-1

3 kg product delivery within 5 weeks
Commercial ligand (Solvias Portfolio)

H2R
R'

COOH

R'
R COOH

[cat*.]

R = alkyl, R' = functionalized alkyl
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Conclusions

� Suitable screening strategy important

� Process development CAN be accelerated

� Most potential: Screening phase

� High throughput screening set-up very effective

� Essential: EXPERIENCED SCIENTISTS



Conclusions

� BUT: No replacement for classical experimentation

� HTS gives reproducible results

� Larger experimental space explored (more leads, 
faster AND novel solutions)

� Experience AND serendipity important



Conclusion

 Scale up equipment
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Think catalytic!


